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Dynamical imaging using spatial nonlinearity:  Final Report 
 

Jason Fleischer, Princeton University 
 
 

All limitations commonly associated with imaging, such as resolution, field of view, and depth of field, 
arise from linear theory[1]. Nonlinear optics can break these limits by exploiting the presence and 
interaction of many photons at once. To date, nearly all nonlinear imaging techniques have relied on point 
processes, such as two-photon fluorescence[2] or harmonic effects[3], in which the temporal frequency is 
the relevant parameter. These methods ignore the spatial content of the object, typically require scanning 
to record a whole image, and remain restricted by linear propagation from the sample to the detector. 
Spatial nonlinearity can overcome these issues by mixing modes with high and low spatial frequencies.  
 In this proposal, we explored the dynamics of imaging using spatial nonlinearity. This included 
fundamental dynamics of spatial mode mixing, a nonlinear generalization of Abbe’s 1873 theory of 
diffraction, phase retrieval using nonlinear diversity, and nonlinear signal-noise coupling. Below, we 
highlight each of these areas. 
 
 
Nonlinear Abbe Theory[4] 
 
The limitations of linear imaging were formalized succinctly 
by Ernst Abbe in 1873 [1].  In his theory, an object is treated 
as an ensemble of Fourier modes, each of which acts 
individually as a diffraction grating.  The observation of 
spatial features is then determined by the wavelength of the 
illumination light, which governs diffraction from the 
(virtual) grating, and the acceptance angle of system, given 
by the numerical aperture.  Spatial modes can be detected 
only if the wavenumbers of the lowest diffraction orders lie  
within the spatial bandwidth of the system (Fig. 1a).  
Otherwise, they — and the corresponding features — are 
lost.    
 Interestingly, Abbe’s theory also suggests means of 
imaging beyond the diffraction limit.  Perhaps the most 
straightforward is the use of an additional diffraction 
grating[5] to shift high wavenumbers back into the field of 
view. Numerical processing can then reverse the shift to 
enable super-resolution of the object. Other computational 
methods also rely on a priori information, including “extra” 
knowledge of the field[6, 7], aperture location[8], transfer 
function[9, 10], and/or the illumination[11] or source[12-14] 
radiance. Nonlinear sources and objects have been used[2, 
3], but to date the methods have considered only temporal 
frequency mixing. These are point processes that circumvent linear limits by generating shorter 
wavelengths, tighter focal spots, and less unwanted scattering.  However, beam propagation from the 
sample to the detector is still linear, so that observations are still restricted by the numerical aperture of 
the system.   
 Abbe theory can be generalized in a straightforward manner to include spatial nonlinearity. The 
mechanism is best understood as a nonlinear version of structured illumination (SI). In SI, a pattern of 
light (typically periodic) is projected onto the object, and the resulting Moire fringes let high-k modes 
originally outside of the observation window scatter into it. Numerical deconvolution is then used to 

 
 

      
 
 

    
 
 

Figure 1.  Linear vs. nonlinear Abbe theory.   (a) In 
conventional, linear Abbe theory, object modes are 
treated as diffraction gratings.  High-k modes are 
blocked by the system’s numerical aperture, so that the 
grating is not seen in the image plane.  (b)  In the 
presence of spatial nonlinearity, wave mixing generates 
daughter modes (striped), some of which can propagate 
to the detector plane.  Interference is recorded and, 
with suitable knowledge of the medium response, 
computation can recover the original spatial features. 
O: object; L1,L2: lenses; SF: spatial filter; MLIN, MNL: 
Linear and nonlinear measurements, D: detector. 
 



reconstruct the original signal modes[15].  However, removal of phase ambiguity requires lateral shifting 
of the grating, and 2D coverage in k-space requires rotation and multiple grating periods.  In the nonlinear 
case (Fig. 1b), the object itself creates a spatially varying intensity pattern, I(x), which in the nonlinear 
medium induces an index change Δn = Δn(I). This index change is effectively a diffraction grating, which 
by construction is inherently phase-matched with the modes of the object.   
 Structured illumination can mimic the effects of nonlinearity by projecting a nonlinear (i.e. non-
sinusoidal) pattern onto the object[16]. In this approach, the mixing of high and low wavenumbers occurs 
in a single plane. With bulk dynamics, there are three effects which work in concert: 1) generation of 
daughter waves from mode coupling, 2) changes in the parent waves, and 3) continuous evolution of (1) 
and (2) due to propagation. This latter property can both amplify the original changes as well as cascade 
them. While the particular wave mixing is object-dependent, its general features can expressed by a single 
nonlinear propagator[17, 18]. Once a given medium is characterized, numerical reconstruction (back-
propagation) uses only measurements at the output and works for any object at the input[17, 19]. 
 As an experimental proof of principle, we use as an input a grating-probe signal whose grating 
frequency is too high to pass through the filter (Fig. 2). Here, the probe to grating intensity ratio is 10:1. 
In the linear case, the grating modes are blocked, and only the uniform intensity of the plane-wave probe 
beam is measured. In the nonlinear case, the grating modes remain blocked, but a new mode, kNL, is 
generated and detected. Interestingly, in this simple example, numerical back-propagation is not 
necessary to reconstruct the original modes. Because the system is known to be only weakly nonlinear, 
the dominant process is first-generation four-wave mixing. For a Kerr nonlinearity, the grating mode kg 
will couple with the probe kp to generate a mode at kNL = 2kp−kg, which can be identified directly. By 
extension, this argument gives an upper bound to the resolution improvement in the weakly nonlinear 
case.  Only modes that generate kNL within the observable spectral window, below the filter cutoff kcut, can 
be measured, i.e. modes kNL < kcut corresponding to kg < 
kcut + 2kP. Since the probe beam kP also lies in the 
observable window, its maximum value is kcut as well. 
Therefore, the upper frequency bound of a grating mode is 
3kcut, giving a resolution that is 3x that achievable in the 
linear case.   
 The improvement in resolution due to nonlinearity is 
theoretically unlimited[16], though some subtleties must 
be considered. On one hand, material response is separate 
from diffraction, so that nonlinear wave mixing works well 
beyond any paraxial approximation[20]. (Even adding 
high spatial harmonics numerically can be useful for 
imaging[21].) Physically, evanescent waves at interfaces 
can be controlled nonlinearly[22, 23], and structured 
illumination can be enhanced by saturation[16] and other 
nonlinear effects. On the other hand, the nonlinear modes 
generated by the response are still affected by diffraction; 
modes at the edges of the transmission window, in 
particular, compete with that part of the system transfer 
function. For a single image, the end result is a resonance 
effect (common to all nonlinear problems) in which the 
optimum represents a balance between the modes of the 
object, the information capacity of the system, and the 
nature of the medium response[24]. As in structured 
illumination, though, processing multiple images using 
successively wider windows of spatial frequency can 
compound the improvements. A detailed discussion of 
these issues can be found in the Supplement of Ref. [4]. 

 
 

   
 
 
 

Figure 2: Bandwidth extrapolation via spatial 
nonlinearity.  Left column, simulation; right column, 
experiment.  a,b,c); j,k,l) Input signal.  (a,j) input grating, 
(b,k) input grating + plane-wave probe beam, (c,l) k-space 
measurement, showing three main wavenumbers. d,e); 
m,n) Filtered linear signal (spatial filter SF closed), 
showing lost grating frequencies.  f,g) ;o,p)  Filtered 
nonlinear output: grating modes are still lost, but a 
nonlinearly generated daughter wave appears.  Crosses 
mark calculated reconstruction of lost frequencies using 
only the two measured modes.  h,i); q,r) Full object (SF 
open).  Measured grating mode locations match 
calculation from nonlinear measurement.  Scale bar: 85 
µm for all real space images and π/4.5 µm−1 for all k-space 
images except i,r), which are demagnified 1.5 times. 
	
  
 



   

 
 
Figure 3:  Super-resolution via spatial nonlinearity.  a) Measured input and b,c) measured output intensities for (b) linear and (c) nonlinear 
propagation.  d,e) Measured output spectrum for (d) linear and (e) nonlinear propagation.  f,g)  Linear and nonlinear intensity outputs with the 
spatial filter SF closed and the signal normally incident on the crystal.  The SF allows the green circled regions in d,e) to pass.  h,i)  Linear and 
nonlinear intensity outputs with the spatial filter SF closed and the signal propagating at an angle.  The SF allows the blue circled regions in d,e) 
to pass.  Scale bar: 200 µm. 
 
 
 In the grating example, it was known ab initio that the number of high-k modes outside the numerical 
aperture was limited. That is, there were no modes k> and k>> such that the beat frequency k>>− k> 
appeared inside the observation window. For a more general object, this cannot be guaranteed. Even 
worse, there may be many such modes (potentially an infinite number, though their coupling is 
considerably more inefficient as the wavenumbers increase), as well as higher-order interactions. The 
former problem may be surmounted by changing the angle of the probe beam kp; modes that mix with kp 
will shift along with it, while independent beat modes will not. In this regard, we note that a probe beam 
should be added to any object, both to rule out independent beating and to facilitate mode coupling in the 
first place[18]. For the problem of higher-order interactions, the intensity of the object or illumination can 
be varied, as the intensity of the output depends on the product of input amplitudes. However, recent 
experiments have shown that four-wave mixing is the dominant interaction during propagation[25], so 
that neglecting higher-order interactions is usually a valid approximation.     
 Besides resolution, there are other metrics of image quality that may take precedence, e.g. visibility of 
features for (automated) discrimination. An example is shown in Fig. 3. In the linear case, the output 
image is again diffraction-limited by the spatial filter, making the bars of the chart unrecognizable. In the 
nonlinear case, the bars are clear and distinct. The improvement can be quantified by the Rayleigh 
criterion, which corresponds to a minimum visibility V = (Imax − Imin)/ (Imax + Imin)  = 0.15 for detection of 
the bars (from maxima to central dip).  For our experimental measurements, the best linear visibility is 
only 0.095, while the worst visibility in the nonlinear regime is 0.32. This is more than a threefold 
improvement, a result due not only to high-k modes folding into the observation window but also to low-k 
modes (esp. the k=0 DC term) scattering out of it. Spectral energy coupling can be observed directly by 
adjusting the spatial filter. When the filter is centered on the optic axis (k = 0), the nonlinear output power 
is significantly lower than the linear power. When the filter is shifted laterally by 5mrad, so that it is 
centered on the first-order diffraction lobe, the contrast and power are greatly increased. Interestingly, this 
improvement is object-dependent, implying that system performance can be optimized if the target is 
known. More generally, the results show that fundamental trade-offs in linear optics, such as resolution 
vs. contrast, need not apply in nonlinear imaging systems.  
 
 
 



Nonlinear phase retrieval[26] 
 
One of the earliest and most important examples of computational 
imaging is phase retrieval. The most common example is the Gerchberg-
Saxton algorithm[27], in which the phase is computed using intensity 
patterns measured at two different planes of propagation [typically the 
near-field (image) and far-field (Fourier) planes]. Other forms of 
parameter diversity, such as axial[28] and transverse[29, 30] 
displacement, wavelength[31], and polarization [7], have been used as 
well. These methods work because in beam propagation, dispersion and 
diffraction of spatial modes convert phase information into intensity.   
 Nonlinear media provide an additional relationship between 
amplitude and phase through intensity-dependent changes to the 
refractive index. As a result, nonlinear systems provide a natural route 
toward contrast enhancement and increased sensitivity to phase[26, 32-
38]. A comparison between linear and nonlinear phase retrieval is 
shown in Fig. 4. In each case, a uniform phase φ = 0 is used as input 
then iteratively approximated, using the two measured amplitudes as boundary conditions. Compared 
with linear phase retrieval, which is independent of amplitude and has a monotonic convergence behavior, 
nonlinear retrieval is much more complex. Object- and intensity-dependent phase-matching conditions 
give rise to resonant spikes in convergence. Typically, the largest spike sets a condition for stopping the 
iteration cycle, but more work needs to be done to prove this. Nevertheless, in all cases tested so far, 
nonlinearity yielded a faster convergence speed and a lower phase error than linear methods (both ~2x 
better). 
 
 
Nonlinear signal-noise coupling[39, 40] 
 
Nonlinearity has a similarly dramatic effect on light that is 
partially spatially correlated. As with diffraction, spatial 
coherence can either compete or cooperate with nonlinearity, 
e.g. by inhibiting instabilities or generating new ones. In 
terms of information processing, there is a rich interplay 
between spatial nonlineairty, signal, and noise that is only 
just beginning to be explored[24]. For example, energy can 
transfer nonlinearly from noise to signal, resulting in a 
“stochastic resonance” that can boost the signal to 
detectability[41]. In contrast, mode mixing from nonlinearity 
can create an effective noise, reducing the information 
capacity of an optical system[24, 42]. 
 An example of nonlinear signal-noise coupling is shown 
in Fig. 5. Light from a 532nm laser is incident on a resolution 
chart followed by a holographic diffuser. A lens then images 
the resolution chart onto a photorefractive SBN:60 
(Sr0.6Ba0.4Nb2O6) crystal.  The role of the diffuser is to scatter 
light from the object, in a maner similar to clouds or tissue, 
so that the chart features are diffused and unrecognizable. In 
the experiment, the diffuser has a Gaussian angular spread of 
0.5◦ and is placed 15mm after the object, so that the 
correlation length ~ 100µm at the input face of the crystal.  
To give a uniform, rather than speckled, input pattern, the diffuser is rotated at a rate (~200Hz) that is 

     

 
 
 
 

Figure 4. Nonlinear phase matching.  
Phase matching gives a convergence 
criterion for nonlinear phase retrieval, 
yielding faster convergence with lower 
error. Left: nonlinear; right: linear. 
 

 
 
 

 
 

Figure 5. Instability-driven recovery of diffused 
images.  (a) Experimental setup. (b-g) 	
   Experimental 
output with increasing nonlinearity. (b) Undiffused 
image of the resolution chart.  (c) Output after linear 
propagation.  (d) Nonlinear output for weak 
nonlinearity (δn = 1.3x10–4). (e-g) Output for stronger 
nonlinearity, above the threshold for incoherent 
modulation instability ((e) δn = 1.7x10–4, (f) δn = 
2.0x10–4, (g) δn = 2.3x10–4).  Numbers below the 
frames are the corresponding input-output correlation 
coefficients, 	
  C = Ichart ⋅ Iout

NL . 
 



much faster than the response time of the crystal (~1s).  Figure 5b shows the input pattern without the 
diffuser, while Fig. 5c shows the time-averaged pattern when the diffuser is rotated.  For SBN, the 
nonlinear index change is ∆𝑛 = 𝜅𝐸!"" 𝐼 /(1 + 𝐼 ), where 𝐼  is an intensity perturbation above a 
spatially homogeneous background intensity 𝐼! , Eapp is an electric field applied across the crystalline c-
axis, and 𝜅 = 𝑛!𝑟!!(1 + 𝐼! ) is a constant depending on the base index of refraction no, the electro-optic 
coefficient r33, and 𝐼!  [43]. Here, the brackets  denote a time average., where the integration time τ 
is longer than the time scale of fast phase fluctuations τφ but shorter than the slow response time τr the 
photorefractive crystal (i.e. τφ  < τ < τr). For the experiments, the illumination intensity is kept a constant 
10µW and a self-focusing nonlinearity is created and controlled by varying an applied voltage bias across 
the crystal.  Light exiting the nonlinear crystal is then imaged onto a CCD camera. 
 Scattered images like the one in Fig. 5c are partially coherent and can be characterized as a statistical 
ensemble of spatial modes. For the geometry here, the field passing through the chart is effectively 
multiplied by many realizations of the diffuser transmission function (a random pure-phase plate), so that 
the initial image cannot be reconstructed by simple linear averaging[44]. On the other hand, the modes of 
the product beam are not entirely random; there are correlations due to the original image.  In a nonlinear 
medium, these modes can interact dynamically as they propagate. For simple (e.g. homogeneous) beams, 
possible results include suppressed or enhanced diffraction[45], instabilities[46-48], and spatial optical 
turbulence[49]. For beams with initial correlations, the dynamics are preferentially biased. In particular, 
signal modes can reinforce each other and extract energy from the diffuse background, growing as they 
propagate. For example, a Kerr-type nonlinearity Δn = γ ψ(x)ψ*(x) , where γ is the nonlinear coefficient 

and ψ(x) is the wave-field, gives a convolution of modes in Fourier space, Δn = γ d !k∫ ψ̂( !k )ψ̂*(k − "k ) , 

so that any correlations in the wavefunction ψ will influence the subsequent nonlinear response. If an 
instability is seeded, then exponential growth of the signal is possible. 
 An experimental demonstration of this dynamics is given in Fig. 5, which shows the output face of 
the crystal as the nonlinear coupling strength is increased.  As in the simulations, there is no visible 
change in the output pattern until a threshold is reached (Figs. 5c,d), after which the quality of the image 
degrades.   A measure of the image quality can be obtained by computing the cross- correlation 
C = Ichart ⋅ Iout

NL∫ dx  between an ideal input chart (Ichart = 1 at the bars and zero elsewhere) and the 

measured output intensity.  These values are shown beneath the frames in Fig. 5.      
 

 
Phase-space optics[50] 
 
Phase-space representations simultaneously store spatial and spatial frequency information, in a manner 
analogous to the position-momentum representation in mechanics. Indeed, under the common assumption 
that the coherence time of the wave-field is much shorter than the response time of the camera (typical of 
most non-laser sources), a Hamiltonian or eikonal description of wave evolution is suitable[51]. 
Accordingly, any (nonlinear) dynamics that can benefit from a Hamiltonian description would best be 
treated by a phase-space representation. 
 There are many choices of functions that represent phase space. Perhaps the most popular is the time-
averaged Wigner distribution function (WDF), defined as 
 
f (r,k) = ψ*(r +ξ / 2)ψ( f −ξ / 2)eikξ dξ∫  

 
where r = (x,y) and k = (kx, ky) are the 2D spatial and spatial frequency vectors, respectively[52]. This 
form is essentially a Fourier transform of the two-point correlation function, so retains local information 
about intensity and momentum (Poynting vector). In the coherent limit, the WDF is highly redundant, 
since coherent light at a single position is associated with only a single direction (phase). Only a 2D  



 
 
Figure 6. Experimental creation and measurement of beams with arbitrary spatial coherence. An input spatial light modulator (SLM) 
creates a time-multiplexed speckle beam and a measurement SLM uses a scanning aperture to record a windowed Fourier transform of the time-
averaged pattern. Subplots show the local Fourier power spectra (spatial frequency distributions) as a function of position. Top: local power 
spectrum at different points in (x,y). Bottom: intensity image of one representation of a random speckle pattern at the input (diffuser) SLM. For 
comparison, the standard measurements of real-space and Fourier-space images, taken without using the aperture on the output SLM, are shown 
to the right of each figure. a) Elliptical speckles, which rotate across the beam. b) Gaussian speckles, with varying widths across the beam. 
 
 
description is necessary, with two projections of the WDF being sufficient to recover the entire wave-field 
uniquely[53]. In contrast, phase-space distributions of partially coherent beams are usually not redundant, as 
coherence information fills up more of the 4D phase space[54]. 
 Until our work, nearly all measurements in linear optics, and all those in nonlinear optics, recorded 
only the marginals of the WDF, i.e. the intensity and power spectrum projections I(r) = f (r,k)dk∫  and 

I(k) = f (r,k)dr∫  

This means that coherence properties that change as a function of transverse position, as well as more 
complex  phase-space structures, have eluded observation. Correspondingly, there has been limited 
motivation to generate arbitrary, spatially varying patterns of coherence, especially for two-dimensional 
beams. We remedied both problems in this proposal, using spatial light modulators for both coherence 
synthesis and phase-space measurement. 
 Examples of 4D coherence control and measurement are shown in Fig. 6. Figure 6 shows two 
different beams that have homogeneous real space intensities but varying coherence properties across 
both axes of r. The first example (Fig. 6a) uses elliptically shaped speckles, whose orientation is rotated 
in different parts of the field of view. For clarity, we show only one realization of an ensemble of 50 
speckle patterns having the same spatial statistics but different random implementations of speckle; the 
integrated real-space intensity contains no information about the coherence of the beam, while the 
Fourier-domain intensity is a projection over all r and cannot reveal the spatial variations of coherence 
properties. In contrast, local k-space images (taken by the Fourier CCD with the SLM aperture in different 
locations) do give information about the local coherence properties. A similar example is given in Fig 6b, 
which shows a beam designed to have anisotropic Gaussian statistics with an ellipticity that varies 
according to position. Two-dimensional beams with such local variations of coherence properties had not, 
to our knowledge, been created and measured previously. 
 
 
Conclusions 
 
In this proposal, we used spatial nonlinearity as a degree of freedom for imaging. The mode mixing which 
results enables the breaking of many fundamental limits of conventional (linear) imaging, including 
resolution and field of view, and can overcome many of the basic trade-offs, including resolution vs. 
contrast and signal vs. noise. In terms of optical science, the work expanded Abbe’s 1873 theory of 



diffraction to include spatial nonlinearity, prompted the development of new experimental methods of 
phase-space measurement, and facilitated the discovery of new nonlinear dynamics. In terms of imaging, 
the results generalized the field of computational imaging, on both the device and algorithmic levels. 
They also introduced many new and outstanding issues that need to be addressed, such as the best types 
of nonlinearity to use, the uniqueness and robustness of solutions, the levels of improvement possible, and 
the information capacity of nonlinear systems. These will be explored in future work. 
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